Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            The solid solution LnSbxTe2−x−δ (Ln = lanthanide) is a family of square-net topological semimetals that exhibit tunable charge density wave (CDW) distortions and band filling dependent on x, offering broad opportunities to examine the interplay of topological electronic states, CDW, and magnetism. While several Ln series have been characterized, gaps in the literature remain, inviting a systematic survey of the remaining composition space that is synthetically accessible. We present our efforts to synthesize LnSbxTe2−x−δ across the remaining lanthanides via chemical vapor transport. Compiling our results with the reported literature, we generate a stability phase diagram across the ranges of Ln and x. We find a stability boundary for intermediate x beyond Tb, while x = 1 and x = 0 can be isolated up to Ho and Dy, respectively. SEM and XRD analyses of unsuccessful reactions indicated the formation of several stable binary phases. The presence of structurally related LnTe3 in samples suggests that stability is limited by the size of Ln, due to increasing compressive strain along the layer stacking axis with decreasing size. Finally, we demonstrate that late Ln can be stabilized in LnSbxTe2−x−δ via substitution into larger Ln members, synthesizing La1−yHoySbxTe2−x−δ as a proof of concept.more » « lessFree, publicly-accessible full text available December 4, 2025
- 
            Colossal negative magnetoresistance is a well-known phenomenon, notably observed in hole-doped ferromagnetic manganites. It remains a major research topic due to its potential in technological applications. In contrast, topological semimetals show large but positive magnetoresistance, originated from the high-mobility charge carriers. Here, we show that in the highly electron-doped region, the Dirac semimetal CeSbTe demonstrates similar properties as the manganites. CeSb0.11Te1.90hosts multiple charge density wave modulation vectors and has a complex magnetic phase diagram. We confirm that this compound is an antiferromagnetic Dirac semimetal. Despite having a metallic Fermi surface, the electronic transport properties are semiconductor-like and deviate from known theoretical models. An external magnetic field induces a semiconductor metal–like transition, which results in a colossal negative magnetoresistance. Moreover, signatures of the coupling between the charge density wave and a spin modulation are observed in resistivity. This spin modulation also produces a giant anomalous Hall response.more » « less
- 
            Abstract New developments in the field of topological matter are often driven by materials discovery, including novel topological insulators, Dirac semimetals, and Weyl semimetals. In the last few years, large efforts have been made to classify all known inorganic materials with respect to their topology. Unfortunately, a large number of topological materials suffer from non‐ideal band structures. For example, topological bands are frequently convoluted with trivial ones, and band structure features of interest can appear far below the Fermi level. This leaves just a handful of materials that are intensively studied. Finding strategies to design new topological materials is a solution. Here, a new mechanism is introduced, which is based on charge density waves and non‐symmorphic symmetry, to design an idealized Dirac semimetal. It is then shown experimentally that the antiferromagnetic compound GdSb0.46Te1.48is a nearly ideal Dirac semimetal based on the proposed mechanism, meaning that most interfering bands at the Fermi level are suppressed. Its highly unusual transport behavior points to a thus far unknown regime, in which Dirac carriers with Fermi energy very close to the node seem to gradually localize in the presence of lattice and magnetic disorder.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
